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MOLLIFIERS FOR GAMES IN NORMAL FORM AND THE

HARSANYI-SELTEN VALUATION FUNCTION

1. INTRODUCTION

Littlechild-Vaidya [1976] defined and studied ratio measures

of coalitions' "propensity to disrupt" in an n-person characteristic

function game. TI2 attendant difficulties with the choice of ratio

measures led to the introduction and development by Charnes-Rousseau-

Seiford [1978] of new incremental measures giving rise to a wide variety

of "disruption" and "mollifier" solution concepts free of various ratio

defects.

Shapley raised the question of the relation of these "mollifier"

concepts to the Harsanyi-Selten [1959] modification of von Neumann-

Morgenstern's [1953] construction of a characteristic function for games

in normal form to take better account of "disruption" or "threat" possibilities.

In this paper, we show for a large class of gimes that the

Harsanyi-Selten construction yields a constant mollifier. In general, it

can be non-superadditive when the von Neumann-Morgenstern function is

superadditive.

We then extend the "mollification" concept to games in normal

form. In the extended theory, the Harsanyi-Selten construct is a constant

mollifier with the preceding non-superadditive impediment. It also fails

to take account of coalitional sizes. Our extended "homomollifier" concept

does and always yields a superadditive constant sum characteristic function.

2. COMPLEMENTS AND MOLLIFIERS

The concepts of complement and mollifier for n-person games in

characteristic function form were defined and studied in Charnes-Rousseau-
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Seiford [1978]. Since we will require some of these results and also as

motivation for our extended theory to games in normal form, we give the

following brief summary.

Let (N,v) be a characteristic function game where N = {1,2,...,n}

is the set of players and v is a characteristic function, i.e., a non-

negative function defined on the subsets of N with v(0) = 0. The complement

of a game v, denoted v, is defined by

v(S) = v(N) - v(N-S).

We have immediately that

(i) v = v (i.e., the complement transformation is involutory).

(ii) V(0) = 0 and v(N) = v(N).

(iii) For two games u and v

u+v = u + v (i.e., the complement of a sum is the sum

of the complements).

While v will not necessarily be superadditive, even if v is

superadditive, v does inherit some of the structure of v.

Theorem 2.1:

(i) If v is monotone, i.e., A9B>v(A)< v(B), then v is monotone.

(ii) If g is strategically equivalent to v, i.e.,

g(S) = r. v(S) + E ai with r > 0, then g is strategically
icS

equivalent to v.

Theorem 2.2: The Shapley value of a game v and its complement are identical,

i.e.,

i(v) : *i(v) , '1 icN.

If we assume that v is superadditive, the structure of v becomes

more fixed.

Theorem 2.3: If v is superadditive, then

" I I I I



3

(i) (S) > v(S) (VSCN).

(ii) v(s) + v(N-S) > v(N). (1VSN).

(iii) v(SU T)> v(S) + v(T), whenever SnT =

(iv) v is superadditive iff v = v.

Corollary 2.3: v is constant sum iff

v(S) = v(S) for all SCN.

The value v(S) can be considered as a maximum feasible "goal"

of coalition S. It is the largest amount that they can reasonably "expect"

to get just as v(S) is the least they would "accept."

We, therefore, define a mollifier of a game v as any componentwise

convex combination of the function v and its complement v. In particular,

w, a "constant" mollifier of v is defined for 0 < i _ 1 by

w4 (S) j v(S) + (1 -j) v(S),

and a coalitional mollifier is defined by

w(S) :S v (S) + (1- 1S) v(S)

whereps [ 0 ,1] ,V S. This allows us to "mollify" different coalitional

values to a greater or lesser degree than others. In particular, if

S= , we call the associated w(S) a "homomollifier."

It is again immediate that w(0) = 0 and w(N) = v(N) for any

mollifier w of a game v. Mollification also is additive and preserves

strategic equivalence.

Theorem 2.4: Let wu, wv and wg be mollifiers of the n-person games u, v

and g, respectively, with g strategically equivalent to v. Then

(i) wu+v= wu+ wv .

(ii) wg is strategically equivalent to wv .

Constant mollifiers are not necessarily superadditive, but do

possess some attractive properties.

1A'
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Theorem 2.5: Let w be a constant mollifier of a game v.

(i) If v is constant sum, then w (S) = v(S) for all pc[O.1].

(ii) If v is superadditive, then

(a) w (S) is linear and monotone non-decreasing in j.

(b) if wlJ is superadditive, then w112 is superadditive

for all P'2 < Pl.

(c) the core of w is contained in the core of v.

Coalitional mollifiers, however, are superadditive and constant

sum if one imposes some reasonable conditions on the weights 1iS.

Theorem 2.6: Let w be a coalitional mollifier of a superadditive game v.

(i) If the weights pS satisfy 11S +P T = 11SUT whenever SnT

then w is a superadditive game.

(ii) If in addition to (i) PN = 1, then w is a constant sum game.

3. THE HARSANYI-SELTEN VALUATION FUNCTION

An n-person game in normal form is defined by a set of players

N = {1,2,...,n} where each player i has a strategy set 1i and a payoff

function Mi defined as a mapping from the product of the strategy sets

into the real numbers. Thus, Mi : T]1 x 112 x . . x 1In - R.

If each player k selects strategy "k c 1k' then each player i receives a

payoff Mi( 1I 22"' Tn
)"

If we assume that the payoffs to each player are in the same

transferable utility, then each subset SS N has a payoff function

2a Mi( "' 92' ""' Trn) where each player k uses strategy nk E ]k" The
i CS

set of joint strategies for subset SSN is defined as the product of the

strategy sets of the members of S, and is denoted by IS ; a particular

joint strategy is denoted by rS"

" _
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An n-person game is normal form, denoted (MIIN),is constant sum

if Mi(TrN) =  c, N E IN and is zero sum if c = 0.
is N

For a constant sum normal form game (M, N the associated

von Neumann-Morgenstern characteristic function [1953] is defined on the

subsets SN by
E M M( TrS IN-S

)

v(S) = Max Min i CS NS
IS 11N-S

If the game is not constant sum, von Neumann-Morgenstern adjoin a fictitious

player whose payoff is the negative of the sum of the payoffs to the other

players, thus forming a zero sum game, and restrict the resulting characteristic

function to subsets S:N.

For a superadditive characteristic function game (N,v), consider

the normal form game (M v,SN) where

Si = {T:T9N, icT}is the ith player's strategy set,

and SN = S1 x S2 X ... x Sn. Then, the ith player's payoff function

is My (Tit T2 , .. Tn
= v(Ti )

2 i ... T n ) if T. = Ti 17- T., the ith player's choice

I~i3 1 J 1

v({i}) otherwise

This is the normal form game constructed in the inverse theorem of

von Neumann-Morgenstern. The characteristic function derived from this

game is the original characteristic function v, i.e.,

v(T) = Max Min E Mi v (sT, SN-T).
ST SNT i T

where sT cST and SN-T S N-T"

Thus, for each normal form game (M, HN) there is an associated

characteristic function game (N, vM), and for each superadditive

characteristic function game (N, v) there is an associated normal form

game (Mv, SN).

itI -"
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For games in normal form a modified concept of characteristic

function was advanced by Harsanyi [1959] and Selten [1964] that is

supposed to be sentitive to "threats" that the classical max-min

definition overlooks.

We denote by M* the maximal total payoff, i.e.,

M* = Max E Mi(TrN).
TIN icN

This modified characteristic function, denoted h(S), may then be defined

by the two conditions

(i) h(S) + h(N-S) = M*
(3.1)

(ii) h(S) - h(N-S) = AS

where AS is the minimax value of the two person zero sum game between

coalitions S and N-S in which the payoff to S is the difference

E i- EMiieS icN-S

This characteristic function h is obviously constant sum and

(as shown later) satisfies vM < < v M where vM is the classical

von Neumann-Morgenstern characteristic function and v is its complement.

A question posed by Shapley is whether there might be a simple,

"natural" way to construct a normal form game whose classical characteristic

function would be a given (superadditive) function v, and whose modified

characteristic function h would be a mollifier. The following theorem

shows that thii is indeed possible using the construction given by the

von Neumann-Morgenstern inverse theorem. Moreover, the resultant

modified characteristic function is in fact a, constant mollifier.

Theorem 3.1: Let (N,v) be a superadditive characteristic function game and

(MI, SN) the associated normal form game. Then

(i) the classical characteristic function of (Mv,SN) is V,

o t
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and (ii) h, the Harsanyi-Selten modified characteristic function of

(MV,SN) is a constant mollifier of v withip= 1, i.e.,

h(T) = v (T) + I v (T),VT9_N

Proof: Since h(N) = Max X Mv  S : Mv - v(N), it follows from (3.1) that

SN ieN

h(T) = v(N) + AT

2

and

h(N-T) = v(N) - AT

2

The proof will be complete if we show that

AT = v(T) - v(N-T) (Ev(T)).

Let ST be the joint strategy where each player icT chooses strategy T. Then

E M. ST EN-T) =  v() : v(T) for any strategy sNT
i %T icT 

-

Considering next this fixed ST' we see that Am

Max L M T s T  - v(N-T) ?, ,1

SN- T  SN-T iT ~N.T. =evtNT

Thus, I_____

v(T) - v(N-T) v(T) - Max I Mi (ST' SN-T)
SNT icN-T

Min v(t) v.

M* (ST' SN-T)
SNT iT N-T "N-

M Min Mi {ST N-T) - (S-T' SNT)

< Max Min MI (sSNT) -SM v

ST SNT 7 r SicN-T

= T

Similarly, v(N-T) - v(T)< AN-T

'I
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Since AN-T = -AT, we have v(T) - v(N-T) = AT Q.E.D.

Theorem 3.1 shows that for a large class of games in normal

form the characteristic function implied by Harsanyi-Selten's definition

is in fact the average of the von Neumann-Morgenstern characteristic

function and its complement. Thus, a game with a superadditive characteristic

function can have a non-superadditive Harsanyi-Selten valuation function

as the following example demonstrates.

Consider the characteristic function v(1) = v(3) = 5,

v(2) = 14, v(12) = v(23) = 20, v(13) 10, v(123) = 30 whose complement

is v(1) =(3) = 10, v(2) = 20, v(12) = v(23) = 25, v(12) = 16, and

v(123) = 30. Even though v is superadditive (and has non-empty core),

the Harsanyi-Selten modified characteristic function is not superadditive

since

h (1) + h (2) + 2 +2 2 > 2 = h1 (12).

In fact, for this example, h is not superadditive for any p >1/6.

In the next section, we extend the mollifier concepts of section 2

to games in normal form, and show that the homomollifier in this extended

theory, in contrast to the Harsanyi-Selten construct, is both constant

sjjm: and superadditive.

4. PAYOFF MOLLIFIERS FOR NORMAL FORM GAMES

For - general sum n-person game in normal form (M, IN), the

associated two person game between coalitions S and N-S will also be a

general sum game. In such a case, a coalition's desire to make a gain

may be tempered by its wish to inflict a loss. That is, should coalition

S choose its joint strategy according to Max Min Mi (7S IN-So
11S 1 N-S icS o

o
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Min Max Mi (' N-S ) ?
11 S R N S  it'N-S N-

Alternatively, coalitions S and N-S could choose to cooperate

and form the grand coalition. This possibility for cooperation should be

taken into account.

As before, let M* denote the maximal total payoff, i.e.,

M* = Max Ej Mi ('RN). Then the maximal share of M* that coalition S
HIN  icN

could legitimately claim as payment for cooperation with N-S is given by

(4.1) Max Min [M*- Mi (7S, 7rNS)
I s ]IN-S i N-S

We therefore define the characteristic function of (M, 1IN, an

n-person game in normal form, by

M
(4.2) v(S) = Max Min E Mi (S" ' N-S)

R S 1iN-S iSS

and the complement characteristic function of (M, TIN) by

(4.3) v(S) = Max Min M* - Mi (TrS,rN.S)
SIIT N S  I N-S

In section 2 the complement v of a characteristic function v was

defined by v(S) = v(N) - v(N-S).

The following theorem shows that this definition is equivalent to (4.3), hence

the relations between v and v proved in Charnes-Rousseau-Seiford [1978] are

valid for vM and vM defined by (4.2)and (4.3).

Theorem 4.1: vM(s) v M(N) - v M(N-S)

&
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Proof: vM(S) Max Min [M*- " Mi (7 S, INS)]
11 S 7 i E:N-N-S J'S N-S iN-

- M* - Min Max E M (TSNS)
7 S EN-S icN-S

-Max Mi(TrN) Min Max M (S,_S
1N cN N S 1N-S icN-S i S N-S

= vM(N) - Min Max E Mi (nS' 7N-S)
"

!i S  11 N S  icN-S

Since vM(N-S) E Max Min E Mi ( S' 7N-S), the proof is completed by
1N7S 7S iEN-S

applying the minimax theorem to the two person zero sum game between S

and N-S with payoff (to N-S) E Mi ( TS S N-S)  Q.E.D.
i N-S

As in section 2, we remark that any reasonable "goal" of

coalition S should lie between vM (S) and vM(S). Thus, any characteristic

function which attempts to model a game in normal form should lie between
M -M.M -M

and v . By theorem 4.1, if we mollify vM and v as characteristic

functions, we would obtain results identical to those of section 2, and

our theory would have failed to capture the "normal form" structure of

the game.

Therefore, for games in normal form, we first mollify the

payoffs and then construct a characteristic function from these mollified

payoffs.

As motivation for the general case, we first reexamine Harsanyi-

Selten's modified characteristic function (Cq with n= , in Selten's

notation) given by

(4.4) h(S) = iM* + I AS
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or equivalently by

(4.5) h(S) = Max Min[ (" ' 'N-S) + 1 (M~*- ~ TS NS
11s TN 1  iks -EN-S (75  N)]HS HN- s  1 iiN-

For conciseness, we frequently will omit the arguments 7S and RN-S

from the payoff functions; our meaning, however, should be clear.

Note in (4.5) that h is obtained from the average of the two

payoffs used indefining v and vM. It can be shown that h(S) is the Nash

arbitrated threat solution for the two person game between coalitions S and

N-S with payoff functions F, M. and E Mi , under the assumption of

iES iN-S

linearly transferable utility between the two players at the rate 1:1.

This rate does not seem reasorible; a dollar should be worth more to a

smaller coalition that to a larger one. A more reasonable assumption

might be a linear transfer of utility between S and N-S at the rate ISI IN-SI.

Under this assumption, the Nash solution is given by

(4.6) Max Min n in-s M M
IT S IN-S R ics icN-S

where s = ISI

Observe that the payoffs used in defining vM and vM are them-

selves mollified in (4.6). W"2, therefore, define a payoff mollifier,

denoted h(S), as any characteristic function which results from the

mollification (convex combination) of the payoffs used in defining v and

-Mv . In particular, a constant payoff mollifier is defined by

(4.7) h 11(S) = Max Min [(1-1) EdM + Pj(M* E M.)l
11s 11N-S is ieN-S

where e [0,I],

and a coalitional payoff mollifler is defined by

- LI
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(4.8) h(S) : Max Min [(1-uS) X Mi + (M* - Mi)]
I S RN-S L i S iN-S 1

where psE[O,1] ,V S.

Since the payoff functions used in defining a payoff mollifier
lie between those used in the definitions of vM and -M, we immediately

have the following theorem.

Theorem 4.2: Let h(S) be any payoff mollifier for the n-person normal

form game (M, HN).

Then (i) vM(O) = h(O) = vM(0) = 0

(ii) vM(N) = h(N) = vM(N) = M*

(iii) vM(s) < h(S) < vM(S), V SC N.

We note from (4.5) that Selten's construct h(S) is a constant

mollifier (=h (S)) and is not generally superadditive. In view of this

and the unreasonable transfer rate for utility assumed, we examine more

closely the payoff mollifier suggested by (4.6).

We define a payoff homomollifier as the payoff mollifier for

which the weights are given by 1p = I L This payoff homomollifier will
S INI

be the Nash arbitrated threat solution under the assumption of linear

transferability of utility at the rate ISI : IN-SI . In addition, as shown

by the following two theorems, the payoff homomollifier will always be a

constant sum superadditive characteristic function.

Theorem 4.3: Let h(S) be a coalitional payoff mollifier of (M, HN ). If

the weights are additive for disjoint coalitions, i.e.,

IS + IT P WSUT whenever SnT :, then h(S) is superadditive.

tP_
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Proof:-

h(s) +- h(T) = Max Min [(l-PS) 2: M + P S (M* - E M.)

+ Max Min [(1-VT) E2 Mi + 3T(*- iE- M.
TX RN-T icT (M N-

('+ 'J)M* + Max Minm -P)2 Mi - 1 I's 5 M]

4-Ma Mm [(1-lT E Mi -
11T .~~ Mi]

h(S UT) =Max Min [(1-us UT) E M. + PSUT(M* - NH U 11 N-SUT I iESUT iE:N-S U T1

SUT*+Max Min ( TP E MlP
=~~~ ~ iST T Eu 1

-
1 'U iEN-SUTJ

Now let Ms S (~ 5  Mi S iPS Mij

MT =[-u Mi P T 2 M1]
L iE r iE:N-T J

and M sur d('"S UT) ES UN. - 'NS U1
I SST U iEN-S UT ~

Then M SUT M s + MT*

if (I *~' TT )NT and (UTNST)are optimal pairs of
joint strategies, we then have

Max Min M )~' + MaN Min * '

S 11N-S S S T 11N-T M T"N

- s ( IS - N*S) + MT (7T, INT)

<. M5 O T* 1TN T)+M IT NS
-MSTr~ I N-SUT)+M 3T TS NSUT

SMa U T T7rSU 'T' 'IN-S UT

1*SUT "N-SUT

Therefore, h(S) + h(T) h(S UT). Q.E.D.
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Theorem 4.4: If in addition to the assumptions of Theorem 4.3 1N = 1,

then the coalitional payoff mollifier h(S) is constant sum.

Proof:

h(S) + h(N-S) = Max Min [(iiPS) E M + PS (M* - I Mi)]E'S iN-SL icS 1 J

+Max Min[(1-NS) Ej M + (M* Mi) ]
I1N-S SIs icN-S 1N-S icS

S M* + Max Min [(I-11S) :SMi - IS E M.
H S N "- iLN-S

+N-S M* + Ma4 Min (1-P N-S) E Mi - N-S " Mi
1N-S 11S I 1 -N-S 1r5

-S ) )M+ Max Min )1- S Mi ls E
11 IINs  iS iEN-S

+ Max Min [PS M. - (I- ]) EM]IIN~ ITI S i

iN-S SI iN-S iE S

= -S + -S ) M* + Max Min [(i-PS) E Mi -  S  Mi]
S N-S i FS iEN-S J

- Min Max [(1-Ps) E Mi - Ps 'ES Mi

TN-S IT S iC S iEN-S J

= 1M M* = M* = h(N). Q.E.D.

We note that the construction of payoff mollifiers for a normal

form game differs from the construction of mollifiers for the characteristic

function derived from the game. In the former, the max-min operator is

applied to a convex combination of the two payoff functions, while in the

latter, one takes a convex combination of the two max-min values. Though,

in general, these two constructions will lead to different values, the

following theorem provides a partial answer as to when the constructions

coincide.

S-".
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Theorems: Let (N, v) be a superadditive characteristic function game

and (MV, SN) the associated von Neumann-Morgenstern normal form game.

Then both mollifier constructions coincide, i.e.,

w(S) = h(S) V S _N

Proof: The key to the proof lies in the observation that the construction

of Mv is such that the payoff to a particular coalition depends only on

the strategies of the members of that coalition. Thus, for a particular

7S E 11S

M S ) -r S M (V (TS' TN-S ) is constant for all RN-S CIIN.S

iES

Hence, it follows that for any S

h(S) = Max Min r(1 - IS) EMiV + 11 S (Mv* - E MiV)1

1s 11 N-S I icS icN-S

= Max Min [(I PS) MSV ('s) + 11S ( M * 
- MN-S (TN-S

1S N-S

= Max (1 - i s ) Mv (V r) + Min 11 (MV* - M (T r
1S SN-S

= (1 - Us) v(S) + PS V (S)

= w(S). Q.E.D.

!..,.



16

REFERENCES

1. Charnes, A., J. Rousseau, and L. Seiford, "Complements, Mollifiers and
the Propensity to Disrupt," International Journal of Game
Theory 7(1), 1978, 37-50.

2. Harsanyi, J.C., "A Bargaining Model for the Cooperative n-Person Game,"
Contributions to the Theory of Games IV, Annals Study 40, Princeton
University Press, New Jersey, 1959.

3. Littlechild, S.C. and K.G. Vaidya, "The Propensity to Disrupt and the
Disruption Nucleolus of a Characteristic Function Game,"
International Journal of Game Theory 5(2/3), 1976, 151-161.

4. Nash, J., "Two-Person Cooperative Games," Econometrica 21, 1953, 128-140.

5. Selten, R., "Valuation of n-Person Games," Advances in Game Theory,
Annals Study 52, Princeton University Press, New Jersey, 1964.

6. VonNeumann, J. and 0. Morgenstern, Theory of Games and Economic
Behavior, John Wiley and Sons, New York, 1953.



Unclassified
Setirty Classification

54,t O CRP IVE , NO 1S(t,. orot htly.I, , t .,dt af n,. 4.....ff- b I-d.,vii. v)l rpr ,r- ii

I ORIGINATING A riv, ry (Corp.atORIuINATO 2S RE PORT N U RITS) SFrATO

Center OTHE REPORTti NO(S)e U n otifed ubr htma ea~

Thli dcent ho as ben Nappoe Forpbi es and th asisle; Vlits ditiutionpi

4 ~ ~ ~ ~ ~ ~ ~ ~ Ofc of Nava Reeac (Cd 434)TS 7p frentati nisIedts

S) ATRACT Wasingon DCjdl ntil - ae

O)hAocpt.fdsupinadmolfeso Charnes, Rousseau and Seiford

[1978]~ ~ ~ ~~ ~a forA game in chaaceriti funtio form are heeetnddtRaESi

whn h von OeTHERogestr functio is( suerddt ye atnd mr i ta f a ssitoe

Tidocurmextend enppoed olfr conlcedese and saly yiels aisiupeatiei

cnsimtned. hratrsi fnto~

DD SUPPLEENT 73 NOTES 12) SncONssRfie MILTAR ACTIVITY
S/P *k Ofceo Naval7-6l se r ch (Codell434)

At ,~ WahntoD



Unclassified
Security Clasification

14 KEY WORDS LINK A LINK B LINK C
ROLE WT ROLE WT ROLE WT

Characteristic function

Normal form

Complement characteristic function

Constant mollifier

Coalitional mollifier

Homomol ] ifier

Harsanyi-Selten valuation function

Constant payoff mollifier

Coalitional payoff mollifier

Payoff homomol 1 ifier

DD o.1473 (BACK)Unclassified

Security Clzincation A- o


